

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Cyclic Voltammetry and Electron Paramagnetic Resonance Study of the Electrochemical Reduction of P-Nitrobenzyl Bromide in Aprotic Solvents

E. Norambuena^a; C. Olea^b; C. Aliaga^b

^a Facultad de Ciencias Básicas, Departamento de Química, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile ^b Facultad de Ciencias, Departamento de Química, Universidad de Chile, Santiago, Chile

To cite this Article Norambuena, E. , Olea, C. and Aliaga, C.(1993) 'Cyclic Voltammetry and Electron Paramagnetic Resonance Study of the Electrochemical Reduction of P-Nitrobenzyl Bromide in Aprotic Solvents', *Spectroscopy Letters*, 26: 8, 1547 — 1557

To link to this Article: DOI: 10.1080/00387019308011633

URL: <http://dx.doi.org/10.1080/00387019308011633>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

CYCLIC VOLTAMMETRY AND ELECTRON PARAMAGNETIC RESONANCE
STUDY OF THE ELECTROCHEMICAL REDUCTION OF
P-NITROBENZYL BROMIDE IN
APROTIC SOLVENTS.

KEY WORDS: Nitro radical, EPR, electrochemical reduction, aprotic solvents, electron-transfer.

E. Norambuena* (1), C. Olea (2), C. Aliaga (2).

(1).- Facultad de Ciencias Básicas, Departamento de Química, Universidad Metropolitana de Ciencias de la Educación. Casilla 147. Santiago. Chile.

(2).- Facultad de Ciencias. Departamento de Química. Universidad de Chile. Casilla 653. Santiago. Chile.

ABSTRACT:

EPR has been used to investigate the radicals postulated as intermediates in the intramolecular electron transfer and dehalogenation of p-nitrobenzyl bromide (p-NBBr) in DMSO and DMFA at room temperature. The electrochemical behavior has been studied through the use of cyclic voltammetry. According to the postulated reaction mechanism, the one-electron reduction of p-nitrobenzyl bromide generates an anion radical which undergoes breakage of the C-Br bond followed by

intramolecular electron transfer. The free radical obtained is finally transformed into *p*-nitrotoluene.

INTRODUCTION

The reduction of nitrobenzyl halides provides an adequate model for the analysis of intramolecular electron transfer, which is an important process in many biological and biopolymeric redox systems (1). One-electron reduction of aromatic compounds which contain an halogen and an electron-attracting substituent has been shown to produce initially an anion radical, leading subsequently to dehalogenation. Such processes have been suggested previously as intermediate steps in several organic substitution reactions. These phenomena have usually been investigated by analysis of UV-visible spectra (2) and by pulse radiolysis in aqueous solution (3,4,5).

In the present study, intramolecular electron transfer was analyzed by following the electrochemical behavior of *p*-nitrobenzyl bromide (*p*-NBBBr) in dimethylsulfoxide (DMSO) and *N,N*-dimethylformamide (DMF) using cyclic voltammetry (CV), characterizing by EPR the anion radicals produced and their posterior fate. We are now reporting the direct formation of these stable products in aprotic solvents at room temperature for the first time. Before the present report, only information about the formation of the transient absorption spectra of the anion radicals in aqueous solutions (2) and

also about matrix isolated radical anions at 77 K (6) had been published.

EXPERIMENTAL SECTION

Electron Spin Resonance

Free radicals were prepared by electrolytic reduction in situ and their EPR spectra were recorded on a Varian V-4502 spectrometer with a 100 KHz unit, a Varian V-1530 Klystron and a 9 inch Varian V-3400 electromagnet. The generated magnetic field was measured with a Varian E-500 gaussimeter and the microwave frequency was about 9.5 GHz.

The spectra were recorded on a Hewlet-Packard 7004 B X-Y plotter.

Cyclic Voltammetry

The cyclic voltammograms were recorded at a glassy carbon electrode, using a saturated calomel electrode as reference and an auxiliary platinum wire electrode, on a CV-27 BAS voltammograph. The measurements were done at approximately a 1×10^{-3} M concentration, at room temperature and under an inert atmosphere.

Chemicals

The solvents used were spectroscopic grade, repurified by standard methods. Technical nitrogen was purified in the usual way. Tetraethylammonium perchlorate was from G. Frederick Smith Chemical Co. P-nitrobenzyl bromide was obtained from Sigma.

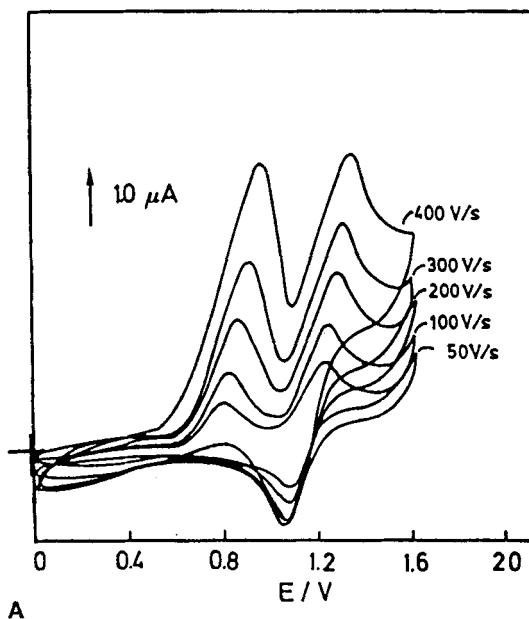


FIG. 1 A.- Cyclic voltammetry of p-NBBr in DMF a 25°C.
First sweep at different scan rates.

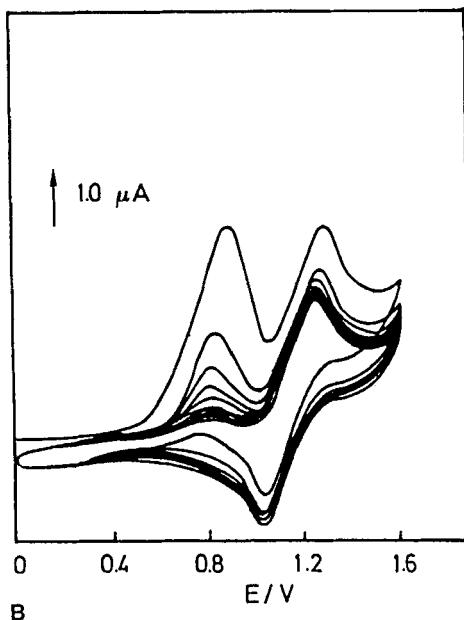


FIG. 1 B.- Cyclic voltammetry of p-NBBr in DMF a 25°C.
Multiple scans at 200 mV s⁻¹.

TABLE 1

CV data for p-NBBr in DMSO and DMF vs saturated calomel electrode

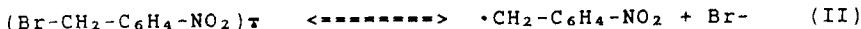
Solvent		- Epc/V	$\Delta E_p/V$
DMSO	wave I	0.72	-
	wave II	1.26	0.063
DMF	wave I	0.86	
	wave II	1.27	0.066

RESULTS AND DISCUSSION

Linear sweep cyclic voltammograms of p-NBBr were recorded under identical conditions in DMSO and DMF. The scan was initiated always in the negative direction from 0.0 V. Figures 1A and 1B show the cyclic voltammograms, exhibiting two well defined reduction waves (Table 1).

The first cathodic wave (I), in both solvents, has no anodic response and presents irreversible behavior in the whole range of sweep rates used (20 - 500 V/s).

From this study it can be seen that i_p increases linearly with the sweep rate and $i_p/v^{1/2}$ is constant in the speed range observed. The E_p shifts catodically with increasing v . When successive sweeps are recorded (Fig 1B) the loss of the first cathodic wave is detected showing that chemical reactions are associated with the electrochemical process being studied.


Accordingly, the following mechanism can be put forth for the compound's electrochemical behavior in aprotic solvents.

In the initial step, reduction of the starting material originates the anion radical (*p*-NBB₂⁻) according to the following equation:

A spectrum can be recorded in the EPR cavity, which presents an hyperfine structure deriving from the interaction of the unpaired electron with a nitrogen nucleus and three pairs of equivalent protons (Fig 2). The values of the coupling constants corresponding to the spectrum of *p*-nitrobenzyl bromide anion radical in DMSO are the following: $a_N = 0.957$ mT, $a_{H^0} = 0.332$ mT, $a_{H^m} = 0.216$ mT, $a_{HCH_2} = 0.083$ mT. The coupling constant for the halogen could not be detected (6).

In a second step, we postulate an intramolecular electron transfer with the resulting breakage of the C-Br bond, originating the *p*-nitrobenzyl radical and a bromide ion according to equation (II):

This bond scission is favored by the strong electron affinity of the nitro group, which reduces charge density in the ring, as also happens with substituents such as CN and

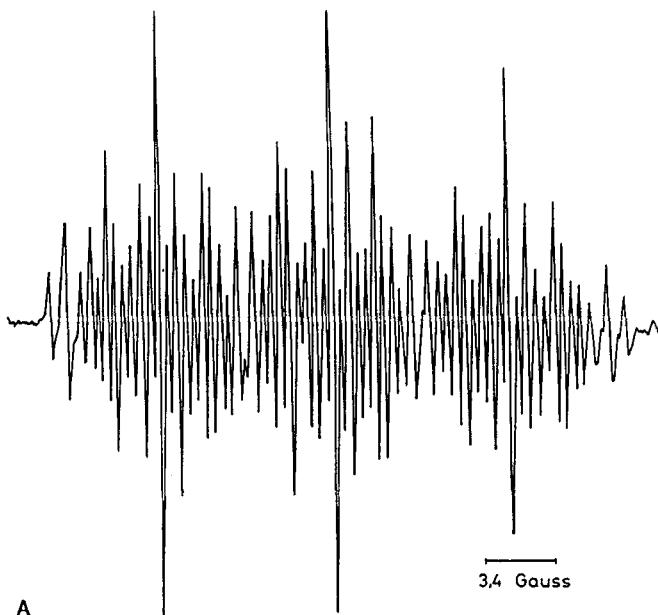


FIG. 2 A.- Experimental EPR spectrum of p-NBBBr- radical in DMSO.

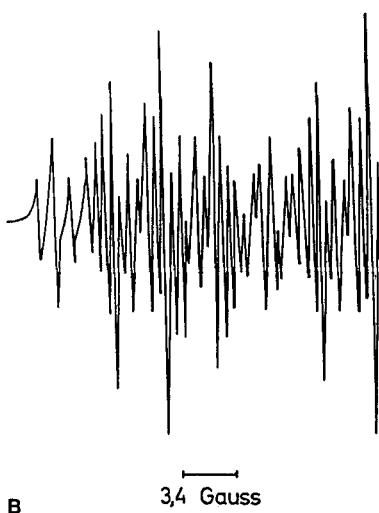
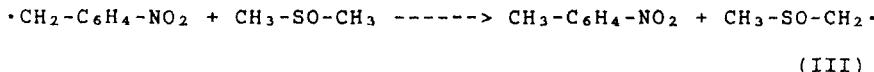



FIG. 2 B.- Simulated spectrum of p-NBBBr- in DMSO.

COCH_3 (3). In addition, the electron accepting ability of bromine facilitates formation of the bromide ion and the corresponding C-Br bond breakage (4).

The reduction of the p-nitrobenzyl radical $\cdot\text{CH}_2\text{-C}_6\text{H}_4\text{-NO}_2$ may also occur through H-atom abstraction (7), with the concomitant formation of p-nitrotoluene, according to equation (III).

When the first potential scan is performed in the range of sweep rates used, no alterations are observed maintains the first wave irreversible. On the contrary, by repeated cycles involving the second cathodic peak, the first wave diminishes progressively and eventually disappears. The experimental data are consistent with the hypothesis that the irreversibility of the first wave is due to chemical reactions associated with the electrochemical process.

The second voltammetric wave (II), corresponds to a reversible couple over the whole range of sweep rates, the difference between the anodic and cathodic peak potentials being 60 mV for sweep rates in the range $20 - 500 \text{ mV s}^{-1}$. The current function $i_p/v^{1/2}$ is constant for both couples, indicating that the processes are diffusion controlled. This couple may be assigned to a reductive process involving the transfer of one electron (equation IV) with formation of the

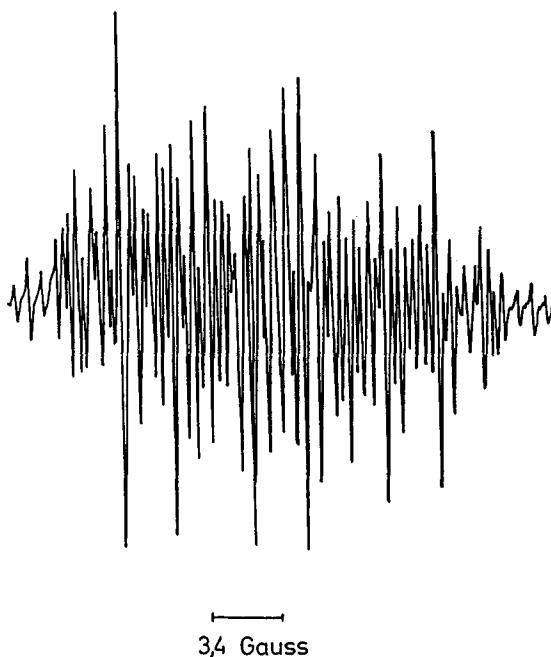
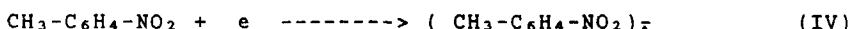



FIG. 3.- Experimental spectrum of p-nitrotoluene anion radical in DMF.

p-nitrotoluene anion radical, a stable species which can be detected by EPR:

The radical obtained in DMF shows a well resolved spectrum (Fig 3) which was analyzed and simulated in terms of a triplet due to the nitrogen nucleus, a triplet due to the C-2 and C-6 aromatic ring protons, another due to the C-3 and C-5 protons, and a quadruplet due to the methyl protons. The

same hyperfine pattern is seen in DMSO. The coupling constants correspond to those already reported for the spectrum of p-nitrotoluene (8).

The results give additional support for the intermediacy of these anion radicals in many reactions of the parent substrates in several organic substitutions at room temperature (2,3,4). The EPR studies at room temperature permit to prove the formation of these anion radicals and their following destiny. The use of cyclic voltammetry and electron spin resonance permits to infer that small molecules like p-nitrobenzyl bromide are good models for the study of electron transfer mechanisms, suggesting the possibility of extending these results to more complex systems.

REFERENCES

- 1.- M. Faraggi, M. Klapper, L. Dorjman, Fast reaction kinetics of one-electron transfer in proteins. The histyldil radical . Mode of electron migration. *J. Phys. Chem.* (1978), **82**, 508-512.
- 2.- P. Neta, D. Behar, Intramolecular electron transfer in the anion radicals of nitrobenzyl halides. *J. Am. Chem. Soc* (1980) **102**, 4798-4802.
- 3.- D. Behar, P. Neta. Intramolecular electron transfer and dehalogenation of anion radicals. 2. Halonitroaromatic compounds. *J. Phys. Chem.* (1981) **85**, 690-693.
- 4.- J. Bays, S. Blumer, S. Bard-Tosh, D. Behar, P. Neta. Intramolecular electron transfer and dehalogenation of nitroaromatic anion radicals. *J. Am. Chem. Soc.* (1983) **105**, 320-324.
- 5.- R. Norris, S. Barker, P. Neta. Steric effects on rates of dehalogenation of anion radicals derived from substituted nitrobenzyl halides. *J. Am. Chem. Soc.* (1984) **106**, 3140-3144.

- 6.- M. Symons, J. Wyatt, T. Kam, T. Lim. Electron paramagnetic resonance studies of electron-capture processes. *P*-nitrobenzyl and *p*-nitrobenzylidene systems. *J. Chem. Soc. Perkin Trans* (1993), 2, 151-155.
- 7.- C. Amatore, G. Capobianco, G. Farnia, G. Sandonà, J-M Savéant, M. Severin, E. Vianello. Kinetics and mechanism of self-protonation reactions in organic electrochemical processes. *J. Am. Chem. Soc.* (1985), 107, 1815-1824.
- 8.- T. McKinney, D. Geske. Details of the steric interaction in mono-ortho-substituted nitrobenzene anion radicals. *J. Am. Chem. Soc* (1967), 89, 2806-2813.

Date Received: May 17, 1993
Date Accepted: June 22, 1993